
ECE 513 HW8 Arpad Voros

1. Given that the signal in Raw Signal.mat contains 3 modulated sound samples for pop,
country, and rock music, it must be demodulated by writing a function titled demod.m to
demodulate the signal at any given carrier frequency and bandwidth.

For this problem, the sampling frequency, Fs, equals 88,200 Hz for all the stations as well
as yt, the carrier frequencies of each station is found using the table below

Station rad/s Hz
pop 0.7124 10,000

country 1.4248 20,000
rock 2.1371 30,000

In addition, each station utilized a bandwidth of around 10,000 Hz, meaning there could
be some slight overlap in the radio. To demodulate the signal, the following steps must
be taken:

1. Multiply the signal with a cosinusoidal function of it’s carrier frequency. This will
convolute replicas of the center frequency to ω = 0, so that the low frequency envelope
is reproduced

2. Apply a lowpass filter to remove any unwanted frequencies

a. Frequencies produced by the convolution

b. Frequencies from unwanted bandwidths

An FIR filter design using a Hanning window will be used. The window selection was
arbitrary. The number of coefficients to the Hanning window are 49. This number was
selected due to it’s ability to reproduce the sound with little-to-no error, as well as keeping
the order of the filter to a minimum. The cutoff frequency for the FIR filter will simply
be the bandwidth w.r.t. the sampling frequency.

Here are the absolute differences for the pop, country, and rock signals:
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Listing for demod.m

1 function yout = demod(yt, Fs, Fc, B, varargin)
2 % AUTHOR: ARPAD ATTILA VOROS
3 % DEMOD amplitude demodulates a signal
4 % INPUTS: yt − incoming raw signal
5 % Fs − sampling freq (Hz)
6 % Fc − carrier freq (Hz)
7 % B − bandwidth of signal (Hz)
8 % varargin − variable input:
9 % 1. phase − phase delay of multiplied cosinusoid

10 % (defaults to 0)
11

12 % PHASE CONSIDERATION
13 % ================================
14 if ¬isempty(varargin)
15 phase = varargin{1};
16 else
17 phase = 0;
18 end
19 % ================================
20

21 % INITIALIZATION
22 % ================================
23 % sampling period
24 Ts = 1 / Fs;
25 % number of samples
26 numsamp = length(yt);
27 % get time array
28 t = (0:Ts:(numsamp − 1)* Ts)';
29 % make same size as input, just in case
30 t = t(1:numsamp);
31 % ================================
32

33 % REMOVE CARRIER FREQ
34 % ================================
35 yout = 2 * yt .* cos(2 * pi * Fc * t − phase);
36 % ================================
37

38 % LOWPASS FILTER
39 % ================================
40 % fir filter with 49 coefficients
41 order = 48;
42 % use hanning window FIR filter design, lowpass filter
43 w = window(@hanning, order + 1);
44 % cutoff frequency
45 wc = B / Fs;
46 % get lowpass filter coefficients
47 low filt = fir1(order, wc, 'low', w);
48 % apply lowpass filter to incoming signal
49 yout = filtfilt(low filt, 1, yout);
50 % ================================
51

52 % PLAY SOUND
53 % ================================
54 sound(yout, Fs);
55 % ================================
56 end
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However, you can clearly see that pop and rock have a distinctly low absolute errors,
whereas country’s error is significantly high. This is due to the fact that when in the
process of demodulating, if you multiply the signal by its carrier frequency and it’s out-
of-phase, then there will be deconstructive interference, thus reducing the amplitude of
the music. Due to this phase dependence, I went ahead and found the maximum error of
each of the three stations by implementing a phase offset ranging from 0→ 2π. Here are
the results for the corresponding phase for the minimum produced error
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You can see the error is plotted versus phase, Θ, (in radians), where the incoming signal
is multiplied by the following cosinusoid

ydemod = 2ytcos(2πFct−Θ) (1)

The errors should follow a sinusoidal path, but fail to do so exactly due to the error
becoming negative near the lower portions. These are the ’kinks’ are seen near the
bottom. The minimum of each of the phases for each station is plotted along the dotted
line, which are

Station Θ which minimizes error
pop 5.6085

country 4.5543
rock 4.1747

The function demod.m now takes into account a variable argument at the end which is
this phase offset, Θ. With no argument, it defaults to 0. However with an argument, it
takes the value of said argument. The three initial plots are recreated to consider their
phases which result in the minimum absolute error in the following page.
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Now considering the phase component in demodulation, we see the following absolute
errors:
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Here we can observe a significant decrease in error for the country station, as well as a
little bit for the pop and rock stations as well. To get better grasp at the size of the error,
the true pop, country, and rock signals are plotted alongside their respective errors:
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This error is small enough to where a human cannot hear the difference between the
two.

Some next steps to take for this problem would be to consider quadrature demodulation.
Due to having an error in phase as well as a little in magnitude, quadrature demodulation
can split up the incoming signal into it’s in-phase and quadrature-phase components to
observe and accommodate for this phase and magnitude dependent property. However,
for now, this routine demod.m works just fine.
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2. A transfer function for a continuous-time system is given

(a) Calculate a discrete-time transfer function by applying the impulse invariant ap-
proach

Using the residue function in MATLAB, we get the system in the following ex-
panded form

H(s) =
2.39

s+ 3.12
− 3.42

s+ 1.67
+ 1.5 (2)

After taking the transfer function to the time domain (inverse Laplace transform),
sampling it at T = 1.15 (substitute in nT = t), taking the transfer function to the Z
domain (Z-transform), and multiplying by T , we simply the now-impulse invariant
transfer function, which is given by

HIP (z) =
0.8855− 0.6190z−1 + 0.005z−2

1− 0.1661z−1 + 0.00287z−2
(3)

(b) Using the bilinear transformation, which is defined as

s⇒ 2(z − 1)

T (z + 1)
(4)

where T = 1.15 again. We take the transfer function given in (2) and substitute for
all s. After simplifying, we get the post-bilinear transform transfer function, given
by

HBT (z) =
1.0481− 0.3012−1 − 0.3175z−2

1 + 0.3055z−1 − 0.0066z−2
(5)

(c) Plotting the three magnitude responses w.r.t. ω ranging from 0→ π/2
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Figure 1: The continuous-time, impulse invariant, and bilinear transfer functions
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(d) Since we are attempting to approximate the continuous-time transfer function, the
magnitude response closest to the original is the better approximation. In this
case, the bilinear transformation of the transfer function resulted in a more similar
response, meaning it was the better result.

3. A second order continuous-time transfer function for the Butterworth lowpass filter will be
transformed into a digital highpass filter using the bilinear transformation. The transfer
function results in an attenuation at the cut-off frequency of 3dB.

(a) Know the bilinear transformation from (4), and the prewarped frequency, given by

Ωc ⇒
2

T
tan

(ωc

2

)
(6)

we can calculate Ωc for the new cutoff frequency, ωc = 0.7π. Then using MATLAB,
we are able to compute the coefficients of the filter

1 %% 3 A
2

3 % omega ranges from 0 to 2pi
4 w = linspace(0, 2 * pi, 500);
5

6 % cutoff ratio, cutoff frequency, and normalized prewarped cutoff ...
frequency

7 wc rat = 0.7;
8 wc = wc rat * pi;
9 Oc hat = tan(wc / 2);

10

11 % bilinear transform performed
12 z = exp(1i * w);
13 s = (z − 1) ./ (Oc hat * (z + 1));
14

15 % calculate transfer function (s already substituted)
16 % this results in the same magnitude response, when plotted
17 % as the freqz function using the coefficients
18 Hs = 1 ./ (s.ˆ2 + sqrt(2) * s + 1);
19

20 % precalculate some constants
21 c0 = Oc hat;
22 c1 = 1 + sqrt(2) * c0 + c0ˆ2;
23 % calculate numerator coefficients
24 b = ones(1, 3);
25 b(1) = c0ˆ2 / c1;
26 b(2) = 2 * b(1);
27 b(3) = b(1);
28 % calculate denominator coefficients
29 a = ones(1, 3);
30 a(2) = 2 * (c0ˆ2 − 1) / c1;
31 a(3) = (1 − sqrt(2) * c0 + c0ˆ2) / c1;
32

33 % see magnitude and phase response of the newly transformed highpass ...
filter

34 freqz(b, a);
35 title("Converted Filter Response using freqz");

Where the coefficients give the new transfer function

Hhp =
0.1311− 0.2622z−1 + 0.1311z−2

1 + 0.7478z−1 + 0.2722z−2
(7)
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Figure 2: Magnitude and Phase response of the new highpass filter

and we can see that at 0.7π, we attenuate at 3dB
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Figure 3: Showing the filter matches specifications
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4. A fourth order lowpass filter with 1dB attenuation at the normalized pass band edge
ω1 = 0.4π and an attenuation of 34dB in the stop band transfer function given

(a) Transforming the discrete-time lowpass filter to a highpass filter, the following trans-
formation must be made

Z−1 = − z−1 + α

1 + αz−1
(8)

where

α = −cos(0.5(ωc + ω̂c))

cos(0.5(ωc − ω̂c))
(9)

In this case, ω̂c equals the new cutoff frequency of the transformed filter and ωc

equals the current cutoff frequency of the filter. Now, H(z = Z(z)) is calculated,
which gets simplified down to the post-transformation transfer function

H(z) =
0.05− 0.0081z−1 + 0.075z−2 − 0.0081z−3 + 0.05z−4

1 + 2.2992z−1 + 2.6650z−2 + 1.5697z−3 + 0.4186z−4
(10)

(b) Using the MATLAB ellip routine, we can design a filter to follow the same speci-
fications

1 %% 3 B
2 order = 4;
3 [b2, a2] = ellip(order, 1, 34, wc rat, 'high');

>> b2

0.0500 -0.0082 0.0750 -0.0082 0.0500

>> a2

1.0000 2.2992 2.6650 1.5697 0.4186

We can observe that the coefficients are identical (minus the slight error where we
got 0.0081 in the numerator but ellip got 0.0082)

(c) Using the MATLAB routine freqz, we can see that our filter has the appropriate
magnitude response
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Figure 4: Magnitude and Phase response of the new highpass filter

and we can see that at 0.7π, we attenuate at 1dB, as well as approaching 34dB
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Figure 5: Showing the filter matches specifications
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5. Designing an FIR filter using Parks-McClellan optimal equiripple design to meet the
following specifications

• Sampling frequency - 44056 Hz

• Stop band 1: 0 to 2000 Hz

• Pass band: 4000 to 18000 Hz

• Stop band 2: 20000 to 22028 Hz

• Pass band ripple - δp = 0.15

• Stop band ripple - δs = 0.01

(a) Using the MATLAB routine firpmord, we are able to find the optimal order (and
other inputs) to the other routein firpm given our band edges and ripple values.
The proper syntax is found in the following listing

1 %% 5 A
2 % sampling frequency
3 Fs = 44056;
4 % stop band edge 1
5 ws1 = 2000;
6 % pass band edges
7 wp1 = [4000, 18000];
8 % stop band edge 2
9 ws2 = 20000;

10

11 % ripple values
12 ∆ s = 0.01;
13 ∆ p = 0.15;
14

15 % array of band edges, used for inputs into firpmord
16 f = [ws1, wp1, ws2];
17 % array of the amplitudes for the intermediate sections of
18 % each band, so first is band stop (0), then band pass (1), then
19 % band stop again (0)
20 amp = [0, 1, 0];
21 % ripple values for the stop/pass bands respectively
22 ripple = [∆ s, ∆ p, ∆ s];
23

24 % pass them into firpmord along with sampling frequency
25 % to receive inputs to firpm
26 [order, f0, a0, w] = firpmord(f, amp, ripple, Fs);

The best order system to meet our specifications from firpmord yields order to be
25.
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(b) Plotting the magnitude (not in dB) and phase response of the filter vs. our ideal
magnitude specifications
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Figure 6: Filter designed using firpmord and firpm

(c) Showing the designed ripple boundaries versus what the ripple is actually at
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Figure 7: Resulting ripple boundaries of firpmord
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(d) Modifying the del argument within firpmord to match the ideal ripple boundaries,
the parameters passed into firpmmord to match are

δp = 0.115

δs = 0.015
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Figure 8: Matching ripple boundaries using firpmord

Using guessing and checking, I was able to get a near perfect match with the ripple
values shown above. Note that the dotted lines represent the constant, ideal ripple
boundaries, and only the filter response changed. With these inputs to firpmord,
we were able to match our ideal ripple boundaries of δp = 0.15 and δs = 0.01.
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Plotting the magnitude (not in dB) and phase response of the adjusted filter vs. our
ideal magnitude specifications
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Figure 9: Adjusted magnitude and phase response

(e) Approximations of the pass band and stop band edges can be crudely shown in the
following image. Note that during calculations, values will be slightly adjusted
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Figure 10: Approximations for pass band and stop band edges
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where

ω1
c,stop ≈

[
0, 0.0885

Fs

2

]
= [0, 1949]

ω1
c,pass ≈

[
0.1816

Fs

2
, 0.8171

Fs

2

]
= [4000, 18000]

ω2
c,stop ≈

[
0.91

Fs

2
,
Fs

2

]
= [20045, 22028]

The pass band shows the ideal values, since it just so happens to show exactly at
1 − δp = 0.85, whereas the other two are approximated. However, all of our band
edges seem to match what our original filter was designed to for!
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